Общеобразовательные |
М.: 2008 - 296 с.
Книга представляет собой записки продвинутого курса
анализа, прочитанного автором в 2006/07 годах в Независимом московском
университете. В курсе на раннем этапе вводится понятие гладкого многообразия и
уделяется много внимания векторным полям, дифференциальным формам, ориентациям и
прочему материалу, лежащему между курсами анализа и дифференциальной геометрии.
Из менее традиционных тем отметим пример Уитни и доказательство (в ослабленном
варианте) теоремы регулярности для эллиптических систем.
Формат: pdf
Размер:
1,7 Мб
Смотреть, скачать:
drive.google
ОГЛАВЛЕНИЕ
Предисловие 3
Первый семестр 7
1. Топологические пространства 7
2. Непрерывность и пределы 12
3. Действительные числа 15
4. Компактность 22
5. Связность; пополнение 28
6. р-адические числа 33
7. Канторово множество 38
8. Производная 45
9. Равномерная сходимость; равномерная непрерывность 51
10. Интеграл 55
11. Ряды 61
12. Аналитические функции 67
13. Элементарные функции 80
Задачи к первому семестру 87
Второй семестр 101
14. Мера Лебега на R 101
15. Интеграл Лебега 107
16. Произведение мер; мера Лебега на R™ 116
17. Производная 125
18. Высшие производные 133
19. Теорема об обратной функции 136
20. Теорема о неявной функции 141
21. Теорема Арцела—Асколи и дифференциальные уравнения 147
22. Замена переменных в интеграле 154
23. Теорема Сарда 159
24. Пример Уитни 165
Задачи ко второму семестру 174
Третий семестр 184
25. Многообразия и касательные пространства 184
26. Касательные векторы, локальные кольца и векторные поля 192
27. Фазовые кривые и фазовые потоки 204
28. Интегрирование плотностей 210
29. Дифференциальные формы 215
30. Интегрирование форм по цепям 222
31. Интегрирование форм по многообразиям 228
32. Два слова о когомологиях де Рама 237
33. Теорема Фробениуса 242
34. Пространства L1 и L2 248
35. Преобразование Фурье в R": формула обращения 256
36. Преобразование Фурье: дальнейшие свойства 261
37. Распределения, они же обобщенные функции 267
38. Пространства Соболева 272
39. Эллиптические операторы 278
Задачи к третьему семестру 287
О том, как читать книги в форматах
pdf,
djvu
- см. раздел "Программы; архиваторы; форматы
pdf, djvu
и др."
|