Educational resources of the Internet - Mathematics.

 Образовательные ресурсы Интернета - Математика.

        Главная страница (Содержание)

   

Общеобразовательные

Математика. Лисичкин В.Т., Соловейчик И.Л.

М.: 1991. — 480 с.

Пособие написано в соответствии с действующей программой для средних профессиональных учебных заведений. Теоретические материалы сопровождаются подробными решениями примеров и задач. По каждой теме прилагается достаточное количество задач для самостоятельного решения.

 

 

Формат: pdf        

Размер:  184  Мб

Смотреть, скачать:   drive.google  

 

 

 

 

 

ОГЛАВЛЕНИЕ
Первая глава .......... ...... 16
. Формулы сокращенного умножения и их применение..... 16
]. Формулы сокращенного умножения.......... 16
'2. Квадрат суммы и разности двух чисел......... 16
.4. Куб суммы и разности двух чисел........... 17
I. Разность квадратов двух чисел . . ......... 18
Л Гумма и разность кубов двух чисел.......... 18
ii. Решение примеров на все формулы сокращенного умножения . . 19
<} :> Степень числа................... -О
I. Возведение и степень. Правило знаков . . ...... 20
:'. Действия со степенями............... 21
.(. Нулевой показатель степени............. 22
1. Отрицательный показатель степени.......... 23
Г> Дробный показатель степени............. 24
0. Решение примеров на все действия со степенями...... 24
7. Показательные уравнения............. 25
<> 3. Логарифмы ................... 27
I Определение логарифма.............. 28
'.'. Свойства логарифмов................ 29
:i. Теоремы о логарифмах произведения, частного, степени и корня 29
1. Логарифмические уравнения............. 31
<> I Иррациональные выражения.............. 33
1. Основное свойство корня ............... 33
~. Извлечение корня из произведения, дроби, степени ..... 35
>. Преобразование корней................ 36
1. Действия с корнями................ 37
••>. Освобождение знаменателя дроби от корня....... 39
1> Иррациональные уравнения............. 40
§ .">. Iригонометрия .................. 41
I. Обобщение понятия угла. Определение и основные свойства
фигонометричсских функций.............. 42
-• Основные тригонометрические тождества.......... 48
3. Формулы сложения аргументов............. 50
1. Формулы приведения................ 52
•>. Формулы двойных и половинных углов.......... 54
6. Формулы сложения одноименных функций......... 55
7. Обратные тригонометрические функции.......... 57
*. Тригонометрические уравнения ...... ...... 58
Вопросы и задачи для конспектирования.......... 60
1 if а I. Линейная алгебра................ ИЗ
$ 1- Определение матрицы. Действия над матрицами и векторами . . 63
1- Матрицы..................... 63
2. Виды матриц. Векторы................ 63
•V Равенство матриц . . •............... 65
1 Линейные операции над матрицами.......... 65
5. Умножение матриц................. 68
6. Свойства умножения матриц............. 71
§2. Определитель матрицы. Свойства определителей и их вычисление 71
1. Определитель матрицы. Вычисление определителей второго и третьего порядков................. 71
2. Основные свойства определителей............ 73
3. Миноры и алгебраические дополнения элементов определителя 75
4. Теорема о разложении определителя по элементам строки или столбца..................... 76
§3. Обратная матрица. Обращение матриц второго и третьего порядков ..................... 78
1. Определение обратной матрицы.......... 78
2. Вычисление обратных матриц второго и третьего порядков
§4. Решение прост< йп:их матричных УПЯВНРНИЙ
2. Решение системы линейных уравнений в матричной форме ... 84
§5. Решение линейных уравнений по формулам Крамера......85
1. Теорема Крамера................... 86
2. Применение формул Крамера к решению систем линейных уравнений ...................... 87
§6. Решение систем линейных уравнений методом Гаусса ... 89
Вопросы и задачи для конспектирования ......... 91
Контрольное задание ................ 92
Глава II. Числовые системы и приближенные вычисления..... 94
§ 1. Действия с приближенными числами........... 94
1. Приближенные числа................ 94
2. Абсолютная погрешность.....'.......... 95
3. Запись приближенных чисел.............. 96
4. Округление приближенных чисел............ 98
5. Относительная погрешность.............. 99
6. Действия с приближенными числами........... 100
7. Вычисления с помощью микрокалькулятора........ 102
8. Организация вычислительного процесса......... 105
$2. Комплексные числа................. 107
1. Понятие мнимой единицы............... 107
2. Степени мнимой единицы............... 107
3. Определение комплексного числа............ Ю8
4. Действия над комплексными числами в алгебраической форме 109
5. Геометрическая интерпретация комплексного числа .... 112
6. Тригонометрическая форма комплексного числа....... 112
7. Показательная форма комплексного числа......... "5
8. Действия над комплексными числами в тригонометрической форме ..................... 117
Вопросы и задачи для конспектирования......... 122
Контрольное задание ................ 123
Глава III. Векторы и координаты.............. 125
§ 1. Векторы и действия над ними............. 125
1. Векторные величины. Понятие вектора.......... 125
2. Действия над векторами............... 127
3. Разложение вектора в базисе........... '30
4. Декартова система координат............. 131
§2. Прямоугольные координаты на плоскости......... 132
1. Действия над векторами, заданными своими координатами . . . 132
2. Длина вектора, расстояние между двумя точками на плоскости 133
3. Деление отрезка в данном отношении.......... 135
§ 3. Скалярное произведение векторов............ 136
1. Определение скалярного произведения .......
2. Скалярное произведение векторов в координатной форме .
3. Нахождение угла между векторами........
§4. Прямоугольные координаты в пространстве.....
§5. Уравнение линии на плоскости............. 141
1. Уравнение линии.................. 141
2. Понятие о параметрическом уравнении линии........ 142
3. Общее уравнение прямой............... 143
4. Правило составления уравнения прямой.......... 144
5. Уравнение прямой, проходящей через данную точку и имеющей заданный нормальный вектор............. 145
6. Уравнение прямой, проходящей через данную точку и имеющей заданный направляющий вектор........... 147
7. Уравнение прямой, проходящей через две данные точки .... 148
8. Уравнение прямой в отрезках............ 149
§6. Исследование взаимного расположения прямых....... 150
1. Параллельность прямых............... 150
2. Перпендикулярность прямых.............. 151
3. Угол между двумя прямыми.............. 152
§7. Кривые второго порядка............... 152
1. Уравнение второй степени с двумя переменными...... 152
2. Окружность и ее уравнение............ 153
3. Эллипс и его уравнение............... 154
4. Гипербола и ее уравнение............... 156
5. Парабола и ее уравнение............... 158
Вопросы и задачи для конспектирования ......... 160
Контрольное задание ................ 162
лава IV. Производная и ее приложения........... 164
§ 1. Свойства и графики основных элементарных функций..... 164
1. Постоянные и переменные величины........... 164
2. Область изменения переменной............. 165
3. Определение функции. Частное значение функции...... 166
4. Область определения функции............. 167
5. Способы задания функции.............. 171
6. Основные свойства функций.............. 173
7. Основные элементарные функции............ 179
§ 2. Предел и непрерывность функции............ 182
1. Предел переменной величины............. 182
2. Основные свойства пределов.............. 183
3. Предел функции в точке............... 184
4. Приращение аргумента и приращение функции....... 185
5. Понятие о непрерывности функции........... 186
6. Предел функции на бесконечности........... 190
7. Замечательные, пределы............... 191
8. Вычисление пределов................ 192
§3. Производная................... 197
1. Задачи, приводящие к понятию производной........ 197
2. Определение производной............... 202
3. Общее правило нахождения производной......... 204
4. Частное значение производной ............. 206
5. Связь между непрерывностью и дифференцируемостью функции 207
§ 4. Правила и формулы дифференцирования элементарных функций 208
1. Таблица правил и формул дифференцирования....... 208
2. Правила дифференцирования алгебраической суммы, произведения и частного.................. 210
3. Правило дифференцирования сложной функции....... 215
4. Дифференцирование логарифмических функций....... 217
5. Производная степенной функции............ 220
6. Производная показательной функции.......... 222
7. Дифференцирование тригонометрических функций...... 223
8. Дифференцирование обратных тригонометрических функций . . 228
§5. Геометрический и механический смысл производной...... 231
I- Геометрический смысл производной........... 231
2. Механический смысл производной............ 237
3. Производная второго порядка и ее механический смысл .... 239
4. Приложения производной к решению физических задач .... 242
§ 6. Дифференциал ..................245
1. Понятие дифференциала...............245
' 2. Геометрический смысл дифференциала..........240
3. Вычисление дифференциала..............247
4. Дифференциал сложной функции............248
5. Применение дифференциала в приближенных вычислениях . . . 249
§ 7. Исследование функций и построение графиков.......255
1. Возрастание и убывание функций............255
2. Исследование функции на экстремум с помощью первой производной.....................260
3. Исследование функции на экстремум с помощью второй производной ..................... 265
4. Наибольшее и наименьшее значения функции....... 268
5. Практическое применение производной.......... 270
6. Вогнутость и выпуклость. Точки перегиба......... 274
7. Построение графиков функций............ 278
Вопросы и задачи для конспектирования ......... 287
Контрольное задание ................ 288
Глава V. Интеграл и его приложения............ 200
§ 1. Первообразная.................. 290
1. Дифференцирование и интегрирование взаимно обратные действия ...................... 290
2. Определение первообразной.............. 290
3. Неоднозначность нахождения первообразной........ 292
§2. Неопределенный интеграл и его свойства......... 293
1. Определение интеграла............... 293
2. Основные свойства неопределенного интеграла....... 294
§3. Основные табличные интегралы............. 296
1. Основные формулы интегрирования........... 296
2. Интегрирование по формуле I............. 298
3. Интегрирование по формуле II............ 300
4. Интегрирование по формулам III и IV.......... 301
5. Интегрирование по формулам V и VI.......... 302
6. Интегрирование по формулам VII и VIII......... 303
7. Интегрирование по формулам IX и X......... 305
§4. Приложения неопределенного интеграла.....: . . . . 306
1. Нахождение первообразной по начальным условиям..... 306
2. Выделение из семейства кривых с одинаковым наклоном линии, проходящей через конкретную точку........... 307
3. Составление уравнения движения тела по заданному уравнению скорости или ускорения его движения......... 308
§5. Интегрирование подстановкой и по частям......... 310
1. Способ подстановки (замены переменной)......... 310
2. Примеры интегрирования подстановкой.......... 312
3. Способ интегрирования по частям............ 316
§6. Определенный интеграл и его геометрический смысл..... 318
1. Криволинейная трапеция и ее площадь.......... 318
2. Вычисление площади криволинейной трапеции....... 320
3. Определение определенного интеграла.......... 321
§ 7. Основные свойства и вычисление определенного интеграла . . . 325
1. Простейшие свойства определенного интеграла....... 325
2. Подстановка в определенном интеграле........... 327
3. Вычисление определенных интегралов.......... 327
§8. Вычисление площадей фигур с помощью определенного интеграла 331
1. Правило вычисления площадей плоских фигур ........ 331
2. Площади фигур, расположенных над осью Ох ....... 332
3. Площади фигур, расположенных полностью или частично под осью Ох...................... 336
4. Площади фигур, прилегающих к оси Оу . . . ...... 340
5. Симметрично расположенные плоские фигуры....... 342
§0. Приближенное вычисление определенного интеграла..... 343
I. «Неберущиеся» интегралы.............. 343
•2. Определенный интеграл как предел суммы......... 345
3. Метод прямоугольников............... 347
4 Метод трапеций................... ^50
5. Метод парабол.................. ''°3
§ 10. Применение определенного интеграла к решению физических задач ..................... 355
1. Схема решения задач на приложения определенного интеграла 355
2. Нахождение пути, пройденного телом при прямолинейном движении ..................... 355
3. Вычисление работы силы, произведенной при прямолинейном движении тела.................. 358
4 Вычисление работы, затраченной на растяжение или сжатие пружины.................... 359
5. Определение силы давления жидкости на -вертикально расположенную пластинку.................. 360
Вопросы и задачи для конспектирования ......... 365
Контрольное задание ................ 367
VI. Дифференциальные уравнения........... 369
Задачи, приводящие к дифференциальным уравнениям .... 369
Расширение понятия уравнения............. 369
Понятие о дифференциальном уравнении......... 370
Примеры задач, приводящих к дифференциальным уравнениям . 373

Дифференциальные уравнения первого порядка с разделенными и с разделяющимися переменными.......'..... 375
Порядок дифференциального уравнения.......... 375
Дифференциальные уравнения первого порядка с разделенными
переменными................... 376
Дифференциальные уравнения первого порядка с разделяющимися переменными................. 377
Задачи, сводящиеся к решению дифференциальных уравнений
первого порядка с разделяющимися переменными...... 381
Линейные дифференциальные уравнения первого порядка . . . 385
Основные понятия................. 385
Решение линейных дифференциальных уравнений первого порядка методом Бернулли ................. 386
Задача Коши для линейного дифференциального уравнения первого порядка................... 389
Линейные дифференциальные уравнения вида у' + ау = Ь и
!/' = ау.........*............ 390
Линейное дифференциальное уравнение первого порядка с искомой
функцией х(у)................... 392
Дифференциальные уравнения высших порядков....... 393
. Понятие о дифференциальном уравнении высшего порядка . . . 394
Дифференциальное уравнение второго порядка и его общее решение ...................... 394
Задача Коши для простейшего дифференциального уравнения второго порядка ..................

 


О том, как читать книги в форматах pdf, djvu - см. раздел "Программы; архиваторы; форматы pdf, djvu и др."


 

 

 

 

Астрономия

Биология

География

Естествознание

Иностр. языки.

Информатика

Искусствоведение

История

Культурология

Литература

Математика:

1. Начальная школа
2. Средняя школа - математика

3. Средняя школа - геометрия

4. Решение задач
5. ОГЭ - математика
6. ЕГЭ - математика
7. ГДЗ по математике
8. Высшая школа

Менеджмент

ОБЖ

Обществознание

Психология

Религиоведение

Русский язык

Физика

Философия 

Химия

Экология

Экономика

Юриспруденция

Школа - и др.

Студентам - и др.

Экзамены школа

Абитуриентам

Библиотеки 

Справочники

Рефераты

Прочее

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Copyright  © 2006-200 Alexander Vasiliev , St. Petersburg,   Russia,   info@alleng.ru 

    Rambler's Top100