Общеобразовательные |
Решение задач по планиметрии. Технология
алгоритмического подхода на основе задач-теорем. Зеленяк О.П.
К., М.: ДиаСофтЮП, ДМК Пресс, 2008. - 336 с.
В книге предлагается четкая, проверенная многолетней
практикой система обучения решению задач по планиметрии - эффективная технология
алгоритмического подхода на основе задач-теорем. Все задачи снабжены решениями,
которые сравниваются, анализируются и обобщаются. Особое внимание уделено
культуре чертежей и вычислений, логике и способам решений, отбору и
систематизации задач.
Отличительная особенность пособия - наличие
материалов, предназначенных для интегрированного изучения математики и
информатики.
Издание предназначено для учащихся, абитуриентов,
студентов педвузов, учителей.
Формат:
pdf
Размер:
5,2 Мб
Смотреть, скачать:
drive.google
Оглавление
Предисловие 3
Г л а в а 1. Введение 5
1.1. Краткий исторический очерк 5
1.2. Про геометрию 14
Г л а в а 2. Важные понятия планиметрии 17
2.1. Логическое строение курса геометрии 17
2.2. Измерение отрезков 18
2.3. Геометрические места точек 20
2.4. Задачи на построение 21
2.5. Пропорции 24
2.6. Правильные многоугольники и их части 28
2.7. Пифагоровы тройки 34
2.8. Данные и произвольные элементы в задаче 36
2.9. Чертеж и дополнительные построения 37
2.10. Прямые и обратные теоремы.
Необходимые и достаточные условия 39
Г л а в а 3. Задачи-теоремы 40
Окружность (хорды, касательные, углы) 42
Треугольник (высоты, медианы, биссектрисы) 43
Окружность и треугольник 44
Окружность и четырехугольник 45
Четырехугольник 46
Средние пропорциональные отрезки 47
Г л а в а 4. Применение задач-теорем 48
4.1. Практические советы 48
4.2. Применение задач-теорем 61
Г л а в а 5. Методы решения задач 116
5.1. Введение вспомогательных отрезков и углов 116
5.2. Введение вспомогательной площади 120
5.3. Введение вспомогательной окружности 124
5.4. Применение геометрических преобразований 128
5.5. Применение тригонометрии 132
5.6. Задачи геометрические и алгебраические 137
5.7. Применение идеи обратного хода 141
5.8. Применение принципа Дирихле 144
Г л а в а 6. Поиск решений 147
6.1. Анализ и синтез 147
6.2. Эвристические приемы, общематематические идеи 158
6.3. Разные решения одной задачи 171
6.4. Одно решение разных задач 182
Г л а в а 7. Применение нескольких задач-теорем 195
7.1. Применение нескольких задач-теорем 195
7.2. Задачи для самостоятельного решения 219
Г л а в а 8. Координаты и векторы 223
8.1. Координатный метод 223
8.2. Векторный метод 229
8.3. Множества точек плоскости 244
Г л а в а 9. Моделирование в среде Turbo Pascal 254
9.1. Вычисление координат точек 255
9.2. Моделирование геометрических мест точек 272
9.3. Огибающие и траектории 302
Средние величины 315
Указатель некоторых применяемых символов 317
Геометрический словарь 318
Формулы геометрии 321
Формулы тригонометрии 323
Список использованной и рекомендованной литературы 324
Предметный указатель 326
Оглавление 328
О том, как читать книги в форматах
pdf,
djvu
- см. раздел "Программы; архиваторы; форматы
pdf, djvu
и др."
|