Educational resources of the Internet - Mathematics.

 Образовательные ресурсы Интернета - Математика.

        Главная страница (Содержание)

   

Общеобразовательные

Математический анализ. В 2-х ч.  Зорич В.А.

  

М.: ФАЗИС; Наука; Ч.I. - 1997, 568с.; Ч.II. - 1984, 640с.

Университетский учебник для студентов физико-математических специальностей. Может быть полезен студентам факультетов и вузов с расширенной математической подготовкой, а также специалистам в области математики и ее приложений.

В книге отражена связь курса классического анализа с современными математическими курсами (алгебры, дифференциальной геометрии, дифференциальных уравнений, комплексного и функционального анализа).

Основные разделы первой части: введение в анализ (логическая символика, множество, функция, вещественное число, предел, непрерывность); дифференциальное и интегральное исчисление функции одной переменной; дифференциальное исчисление функций многих переменных.

Во вторую часть учебника включены следующие разделы: Многомерный интеграл. Дифференциальные формы и их интегрирование. Ряды и интегралы, зависящие от параметра (в том числе ряды и преобразования Фурье, а также асимптотические разложения).

 

 

Часть I.

Формат: pdf               ( 2012, 720с.)

Размер:  5,1 Мб

Смотреть, скачать:   drive.google  

 

Формат: djvu / zip       ( 1997, 568с.)

Размер: 9,6 Мб

Скачать / Download файл     Скачать

 

 

Часть II.

Формат: pdf      ( 2012, 818с.)

Размер:  6,1 Мб

Смотреть, скачать:   drive.google  

 

Формат: djvu / zip     ( 1984, 640с.)

Размер: 7,4 Мб

Скачать / Download файл     Скачать

 

 

 

 

 

 

ЧАСТЬ I.
Предисловие ко второму изданию IX
Из предисловия к первому изданию XI
Глава I. Некоторые общематематические понятия и обозначения 1
Глава II. Действительные (вещественные) числа 33
Глава III. Предел 76
Глава IV. Непрерывные функции 148
Глава V. Дифференциальное исчисление 170
Глава VI. Интеграл 324
Глава VII. Функции многих переменных, их предел и непрерывность 403
Глава VIII. Дифференциальное исчисление функций многих переменных 421
Некоторые задачи коллоквиумов 533
Вопросы к экзамену 538
Литература 542
Алфавитный указатель 545

 

ЧАСТЬ II.
Глава IX Непрерывные отображения (общая теория) . 11
Глава X. Дифференциальное исчисление с более общей точки зрения 60
Глава XI. Кратные интегралы 113
Глава XII. Поверхности я дифференциальные формы в Rn 165
Глава ХIII. Криволинейные и поверхностные интегралы 213
Глава XlV. Элементы векторного анализа и теории поля 253
Глава XV. Интегрирование дифференциальных форм на многообразиях 305
Глава XVI. Равномерная сходимость и основные операции анализа над рядами и семействами функций 355
Глава XVII. Интегралы, зависящие от параметра 400
Глава XVIII. Рид Фурье и преобразование Фурье 488
Глава XIX Асимптотические разложения 584
Задачи и упражнения 624
Литература 630
Указатель основных обозначений 632
Алфавитный указатель 635
 


О том, как читать книги в форматах pdf, djvu - см. раздел "Программы; архиваторы; форматы pdf, djvu и др."


 

 

 

 

Астрономия

Биология

География

Естествознание

Иностр. языки.

Информатика

Искусствоведение

История

Культурология

Литература

Математика:

1. Начальная школа
2. Средняя школа - математика

3. Средняя школа - геометрия

4. Решение задач
5. ОГЭ - математика
6. ЕГЭ - математика
7. ГДЗ по математике
8. Высшая школа

Менеджмент

ОБЖ

Обществознание

Психология

Религиоведение

Русский язык

Физика

Философия 

Химия

Экология

Экономика

Юриспруденция

Школа - и др.

Студентам - и др.

Экзамены школа

Абитуриентам

Библиотеки 

Справочники

Рефераты

Прочее

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Copyright  © 2006-200 Alexander Vasiliev , St. Petersburg,   Russia,   info@alleng.ru 

    Rambler's Top100