Общеобразовательные |
3-е изд., испр. и доп. - Минск: 2013 -
287с. 2-е изд., перераб. - Минск: 2008 -
271с.
Учебное пособие для 11 класса учреждений общего
среднего образования с русским языком обучения.
Формат:
pdf
(2013 -
287 с.)
Размер:
6,8 Мб
Смотреть, скачать:
drive.google
Формат:
pdf
(2008, 271с.)
Размер:
19,1 Мб
Скачать: yandex.disk
СОДЕРЖАНИЕ
От авторов 3
Глава 1 Степень с рациональным показателем. Степенная функция
1.1. Степень с целым показателем 4
1.2. Корень n-й степени 10
1.3. Тождества с корнями, содержащие одну переменную 19
1.4. Действия с корнями нечетной степени 24
1.5. Действия с корнями четной степени 31
1.6. Бесконечно убывающая геометрическая прогрессия 38
1.7. Периодические дроби 43
1.8. Степень с рациональным показателем 47
1.9. Действия со степенями с рациональными показателями 53
1.10. Сравнение степеней с рациональными показателями 62
1.11. Степенная функция (показатель положительный) 67
1.12. Степенная функция (показатель отрицательный) 78
1.13. Иррациональные уравнения 87
1.14. Решение иррациональных уравнений с использованием свойств функций 93
1.15. Иррациональные неравенства 100
Глава 2 Показательная и логарифмическая функции
2.1. Степень с действительным показателем 105
2.2. Показательная функция ПО
2.3. Показательные уравнения 123
2.4. Показательные неравенства 130
2.5. Логарифмы 137
2.6. Основные свойства логарифмов 144
2.7. Логарифмическая функция 154
2.8. Логарифмические уравнения 165
2.9. Логарифмические неравенства 174
Приложения
Материалы для повторения теоретических вопросов арифметики и алгебры курса
математики 5— 11-х классов 185
Упражнения для повторения арифметического и алгебраического материала курса
математики 5—11-х классов 218
Ответы 255
Предметный указатель 286
В 11-м классе мы снова встретимся с иррациональными числами, научимся
преобразовывать выражения с корнями n-й степени, обобщим знания о степенях с
разными показателями и о степенных функциях, познакомимся с показательной и
логарифмической функциями и их свойствами, продолжим совершенствовать навыки
решения уравнений и неравенств и их систем.
О том, как читать книги в форматах
pdf,
djvu
- см. раздел "Программы; архиваторы; форматы
pdf, djvu
и др."
|