Educational resources of the Internet - Mathematics.

 Образовательные ресурсы Интернета - Математика.

        Главная страница (Содержание)

   
 

Лучшие олимпиадные и занимательные задачи по математике. 5-6 классы. Балаян Э.Н.

М.: 2019 - 248 с.

В предлагаемом пособии рассмотрены различные методы и приемы решения олимпиадных задач разного уровня трудности для учащихся 5-6 классов. Задачи, представленные в книге, посвящены таким уже ставшим классическими темам, как делимость и остатки, признаки делимости, инварианты, решение уравнений в целых числах, принцип Дирихле, задачи на проценты, числовые ребусы и т. п. Ко всем задачам даны ответы и указания, а к наиболее трудным — решения. Большинство задач авторские, отмечены значком (А). В заключительной части книги приводятся занимательные задачи творческого характера, вызывающие повышенный интерес не только у школьников, но и у взрослых читателей. Пособие адресовано ученикам 5-6 классов общеобразовательных школ, учителям математики для подготовки детей к олимпиадам различного уровня, студентам — будущим учителям математики, работникам центров дополнительного образования, а также всем любителям математики.
 

 

Формат: pdf          

Размер:  3,1 Мб

Смотреть, скачать:   drive.google  
 

 

 

 

 

Содержание
Предисловие 3
Раздел I. Условия задач : 6
5 класс    
Признаки делимости чисел, задачи на проценты, доказательство, сравнение, разрезание, текстовые задачи, принцип Дирихле, числовые ребусы, логические задачи, начальные сведения по геометрии
6 класс
Задачи по нахождению НОД и НОК, действия с дробями, решение уравнений с модулем, вычислительные задачи, задачи на проценты, переливание, разрезание и перекраивание фигур, инварианты, принцип Дирихле, логические задачи
Раздел II. Ответы. Указания. Решения    105
5 класс     105
6 класс     155
Раздел III. Удивительные равенства 206
Литература 246



Роль олимпиад с каждым годом становится все более значимой. И не случайно многие вузы стали проводить свои олимпиады для будущих абитуриентов, преследуя цель — привлечь школьников в данный вуз. Победителей, занявших призовые места, освобождали от сдачи экзаменов и зачисляли в вуз.
В связи с этим назрела необходимость в доступной форме ознакомить широкие массы школьников с характером и типом задач, предлагаемых на олимпиадах.
Обычно традиционные олимпиады проходят в пять туров: школьный, районный (городской), областной (республиканский, краевой), зональный (окружной) и всероссийский.
В книге представлены задачи разного уровня трудности, причем сделано это сознательно с тем, чтобы каждый участник мог что-то решить, ибо если задачи слишком трудны, то дети теряют интерес не только к олимпиаде, но и к изучению математики.
Как правило, олимпиадная задача — это задача повышенной трудности, нестандартная как
по формулировке, так и по методам решения. Среди предложенных задач встречаются как нетривиальные, для решения которых требуются необычные идеи и специальные методы, так и задачи более стандартные, которые могут быть решены оригинальным способом. К числу таких методов можно отнести: делимость и остатки, признаки делимости чисел, решение уравнений в целых числах, метод инвариантов, принцип Дирихле, задачи на проценты, логического характера и др.
Эти задачи способствуют резкой активизации мыслительной деятельности, умственной активности, дают возможность самостоятельно составлять подобные, а возможно, и более оригинальные задачи, что в итоге приводит со временем к творческим открытиям в различных областях математики.
 


О том, как читать книги в форматах pdf, djvu - см. раздел "Программы; архиваторы; форматы pdf, djvu и др."


 

 

 

 

Общеобразовательные

Астрономия

Биология

География

Естествознание

Иностр. языки.

Информатика

Искусствоведение

История

Культурология

Литература

Математика:

1. Начальная школа
2. Средняя школа - математика

3. Средняя школа - геометрия

4. Решение задач
5. ОГЭ - математика
6. ЕГЭ - математика
7. ГДЗ по математике
8. Высшая школа

Менеджмент

ОБЖ

Обществознание

Психология

Религиоведение

Русский язык

Физика

Философия 

Химия

Экология

Экономика

Юриспруденция

Школа - и др.

Студентам - и др.

Экзамены школа

Абитуриентам

Библиотеки 

Справочники

Рефераты

Прочее

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Copyright  © 2006-200 Alexander Vasiliev , St. Petersburg,   Russia,   info@alleng.ru

    Rambler's Top100